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Testing to Determine the Underlying Distribution
Using Randomly Censored Data

by
Myles Hollander and Frank Proschan

SUMMARY
For right-censored data, we develop a goodness-of-fit procedure for testing
whether the underlying distribution is a specified function G. Our test statistic
C is the one-sample limit of Efron's (1967) two-sample statistic ﬁ. The test
based on C is compared with recently proposed competitors due to Koziol and
Green (1976) and Hyde (1977). The comparisons are on the basis of (i) applicability,
(ii) the extent to which the censoring distribution can affect the inference, and

(iii) power. It is shown that in certain situations the C test compares favourably

with the tests of Koziol-Green and Hyde.

Some Key Words: Goodness-of-fit test; Kaplan-Meier estimator; Right-censored data.




1. INTRODUCTION

In the classical non-censored one-sample goodness-of-fit problem, one observes

a random Sample xl,...,xn from a population with distribution function

F(x) = P(X s x); the corresponding survival function is F(x) = P(X > x) = 1 - F(x).
The null hypothesis asserts that F(x) = G(x), where G is completely specified.
The need to generalize this problem to encompass censored data arises because in
some situations, such as clinical trials, or life testing, the X's may represent
times to the occurrence of an end-point event and the data are usually analyzed
before all patients, or items on test, have experienced the event. In the clinical
trials context the end-point event could, for example, be relapse, pregnancy, or
death. In the life-testing framework, the end-point event could be failure of the
inner ring of ball bearings which are on test. In these cases the observations

can be viewed as pairs (zi, §.

1), i=1,...,n, where

Zi = mln(xi, Ti

)» aa.1)

1 if Zi = Xi (ith observation is uncensored),

Gi = (1.2)
0 if Zi = Ti (ith observation is censored),

where Ti is the time to censorship of the ith observation. Here we assume that

xl,....xn are independent and identically distributed according to a continuous

distribution F, Tl,...,'l‘n are independent and identically distributed according

to a continuous censoring distribution H(x) = P(T < x), and furthermore the T's

and the X's are assumed mutually independent. The censoring distribution H is

typically, though not necessarily, unknown and is treated as a nuisance parameter.




The goodness-of-fit hypothesis is

H .

o F(x) = G(x), all x, (1.3)

where G is completely specified. Of course, if the censoring distribution H is
such that it prevents us from ‘'seeing” F throughout the support of G, we will be

unable to use the data to test if Ho is true. Thus throughout we make the practical

assumption that support(G) < support(H).
In Section 2 we introduce the C statistic, which is the one-sample limit of

Efron's two-sample statistic W. In Section 3 our test of Ho based on C is

compared with competitors due to Koziol and Green (1976) and Hyde (1977), and various
advantages and disadvantages of the three procedures are noted. For example, the
Koziol-Green test requires the restrictive assumption that the censoring distribution
H and the true life distribution F satisfy the relationship given by (3.2),

namely that H = FB for some B, 0 < B < 2. However when this condition is indeed
satisfied, the Koziol-Green test is consistent against a broader class of alternatives
than the C test or Hyde's test. Hyde's test has the disadvantage that the inference
to be drawn from the test can be adversely affected by the nuisance parameter H.

The C test imposes only a relatively mild restriction on H, namely that the
integral in (2.6) converges. Furthermore, the C statistic (2.5) estimates

-[GdF(= [FdG), independently of H. The C test is however limited in the sense

that it is unable to detect F alternatives to H, for which [FdG = 1/2.

Section 3 also contains a Monte Carlo power comparison of the three competitors
for (a) normal location alternatives to a hypothesized standard normal, and (b)
exponential scale alternatives to a hypothesized exponential with scale parameter 1.
In this limited study, the C test compares favourably with the tests of Koziol-Green _

and Hyde.

Section 4 contains an application of the three goodness-of-fit tests to an update&

version of clinical trial data analyzed by Koziol and Green (1976).
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2. THE ONE-SAMPLE LIMIT OF EFRON'S TWO-SAMPLE TEST

Efron (1967) has considered the two-sample problem with right-censored data.
In addition to the Z's and §'s defined by (1.1) and (1.2), one observes the

analogous quantities

z; = min(Yi, Si)’ (2.1)
1if Zi = Yi,
€ = (2.2)
0 if zi = Si’
where i =1,...,m, and m denotes the size of sample 2. Here Yl,...,Ym are

independent and identically distributed according to an unknown distribution G,

S ,Sm are independent and identically distributed according to I(x) = P(S s x),

17"
and the X's, T's, Y's, and S's are assumed mutually independent.

In the two-sample problem, the null hypothesis is

H F(x) = G(x), all x, (2.3)

*
where the hypothesized common distribution is unspecified. Efron's test of Ho

is based on the statistic
W= -[G(x)dF(x), (2.4)

where F, G are the Kaplan-Meier (1958) estimators of F, G respectively. Letting

(n) denote the ordered Z's,

A k'l 8.
; j
F(x) = jElf(n-J)/(n-jﬂ)} voxe gy Zaod

A

and ﬁtx) =0 for x> 2 Of course G is defined analogously.

(n)’




i Invoking an idea due to Moses (1964), we let the sample size m increase

* -~
[ without limit. Then the unknown G becomes known, Ho reduces to Ho, and W

becomes
C = -[E0E(x). (2.5)

The asymptotic mean, variance and distribution of C in this one-sample
framework are directly obtainable from Efron's asymptotic results concerning ﬁ.
Equivalently, asymptotic properties of C can be derived directly from the result
(cf.Efron (1967), Breslow and Crowley (1974), Meier (1975)) that the stochastic

process n*{?ts) - F(s)} tends, as n-+w=, to a Gaussian process with mean 0 and

covariance kernel

S
I'(s, t) = -F(s)F(t) [ {(T(2)F(2)} !dF(z), s s t,

| where K(z) = F(z)H(z). It follows from the continuous mapping theorem that
[n¥(F () - F0)Gx) + N(O, 02),
where

o2 = [ [ r(s, t)dG(s)dG(t) + [ [ (s, t)dG(s)dG(t)
sst s>t

S
| [{F(s)F(t)/KX(z)F(z)}dF(2)dG(t)dG(s).

n—_g

iy

Ef-on shows that, under H, a2 reduces to [

1 1 ?
o2 = 471 [ 3RE N1 dz = a7l [ 220A(G "Y2)117! a2, (2.6)
0 0

and he notes that the integral in (2.6) fails to converge if H(z) = oL {G(z)}3] as z




E,
2 .
-

R
| -

‘then under H

S

approaches 0. If og is finite and if 02 is a consistent estimator of og,

0’
. def. ~ i
C = n*C - %/o~+N(0, 1).

Assuming o2 is finite, one consistent estimator of o2 is

0 0

~ 1 — —

a2 =41 | z3{xn(c'1(z)}'1dz, 2.7
G(Z )

where i;, the empirical survival function of the Z's, is

sl
» 0 z

£ x<2Z

(1)’

(n) < X,

where z(o) = -o, Expression (2.7) can be simplified to

n .
62 - —l -_+ — o =
o2 = 167! | {n/(n-i DIz )M - Bz 1.

i=1

Let X be distributed according to G and let X* be independent of X

* *
and have distribution G . To test HO versus one-sided alternatives F = G

*
where P(X 2 X ) < %, we reject H 6 if C* < -z, and accept "0 otherwise. To

0

* *
test Ho versus one-sided alternatives F = G where P(X 2 X)> %, we reject

*
Hy 3 C 5 Z and accept Hy otherwise. Here z, is the upper a percentile

0

point of a standard normal distribution.

When there is no censoring, our goodness-of-fit test based on C reduces to

Moses' (1964) goodness-of-fit test based on the one-sample limit of Wilcoxon's

n
tuo-sample statistic. That is, with no censoring, C = 2 Elxi)/n which under Ho
i=1

is distribution-free with distribution that of the average of n independent uniform

%

random variables. The test then refers (12n) “(C-)%) to the standard normal distri-

bution.




A simplified version of (2.5) for computational purposes is

C= {Gz.l}ﬁtz(i))f(zci)),

} where %(z(i)), the jump of the Kaplan-Meier distribution at Z(i), is

A i-1 1-6.
f(z(i)) - j::l{ (n'j+1)/(n’j)}

at z(i) uncensored, and at z(n) uncensored or not.

; Although our continuity assumptions preclude ties, in practice if censored
observations are tied with uncensored observations, the convention when forming

the list of the Z(i)'s is to treat the uncensored members of the tie as being

less than the censored members of the tie.
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3. COMPARISONS OF THE.C TEST,. THE KOZIQL-GREEN TEST, AND HYDE'S TEST

Competing tests of H. have recently been proposed by Koziol and Green (1976)

0

and Hyde (1977).

Koziol-Green (1976) test: Apply the probability integral transformation to

' . = 3 =
the Z's to form new pairs (Vi’ Gi), where Vi m1n(Ui, Li). Ui G(xi),
Li = G(Ti)’ and Gi is as before. This reduces the problem to testing whether

the distribution of the U's is uniform on (0, 1). The Koziol-Green statistic,
a generalization of the Cramér-von Mises statistic to the righ‘-censored situation,

is
1 ~
v2 = n [ {Fy(t) - t}2dt, (3.1)
0

where ;

U is the Kaplan-Meier estimator of the distribution of U.

Koziol and Green derive the asymptotic distribution of 2 under the restriction

that the censoring distribution H be related to the survival distribution F via

H=fb .22

>

for some B, 0 < B < 2. For this model,
P(s; = 0) = [(1 - FByaF = g/(p+1), |

so that Koziol and Green interpret B as the censoring parameter. Koziol and
Green's asymptotic theory for v2 restricts B to be less than 2, and they give
asymptotic critical points of ¢2 for the models B8 = 0 (no censoring) and

g = .5,1, and 1.5. Thus to implement the 2 test, the user must know B8 or
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estimate B from the data. The estimator 8 used by Koziol'and Green is obtained

by setting

Sh B def
B/(B+1) = ] (1-8)n = pg,
i=1

or

B=p/(1-p). (3.3)

If the known or estimated value of B is not one of the tabled values, the user

can choose between interpolating or deriving new asymptotic percentage points.
The condition B < 2 indicates that the Koziol-Green test will be inappropriate
when the expected proportion of censored observations is 2/3 or more. Note that

under HO’ the variance expression (2.6), for the special case of model (3.2),

reduces to
i 2-8
og = 471 £ z“""dz,

which will converge if B8 < 3. This indicates that the C test, in the special
setting of model (3.2), can be used when the expected proportion of censored obser-

vations is less than 3/4.

Hyde (1977) test: iyde has generalized the right-censored model to include

cases where subject i may enter the study some time vy after his lifetime has
started.

Let

a, = log Ctvi) - log Etzi),

and set

n
A= 121(6i - a,).




Hyde- shows that the statistic

n 4
D= A/[ ) a;| +N(, 1),

i=1

S
) a; is, under H a consistent estimator of the standard deviation

where ’
[1-1 0

of A. Hyde makes the additional assumption that E(ai) be finite, but that this
condition is automatically satisfied follows from Hyde's result that E(6i - ai) = 0.

Hyde's statistic, when specialized to our model by setting vy - 0 for all i,

becomes

n
izl{si + log G(z,)
D= . (3.49)
n i
- ) log EIZi)
i=1

If the failure rate r(x) = g(x)/G(x) exists, where g(x) = (d/dx)G(x), then D

can be written as

n i
Y18, - [ r(u)du
i=1 0
D=
n % i
I [ r(u)du

When D is significantly large (small), Ho is to be rejected in favour of

the alternative that the true average failure rate is larger (smaller) than the

average failure rate of the hypothesized distribution G.
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One disadvantage of Hyde's statistic is that the nuisance parﬂﬁeter H can

affect the inference to be drawn. Consider the expectation of the numerator of
(3.4). For simplicity we will restrict attention to the numerator since the
denominator, under HO’ is a consistent estimator of the standard deviation of
the numerator. Furthermore, for ease of calculation, suppose that G(x) = exp(-x).

Then

ElogG(z;) = -Emin(X;, T.) = - [F(x)H(x)dx.

Since

ES; = [F(x)dH(x),

the mean of the numerator of (3.4) is

A(F, H) = [F(x)dH(x) - [F(x)H(x)dx. (3.5)
4% Note also that when F has a density £, we can rewrite (3.5) as
A(F, H) = [H(x){f(x) - F(x)}dx. (3.6)

Suppose now that F(x) = F;(x) =1 - exp(-x2), the Weibull distribution with

shape parameter 2. Then

fl(x) It F].(x) b (zx s l)exp('xz),

so that from (3.6) we see that A(Fl’ H) can be made negative by choosing an H

which puts most of its probability on (0, %) and analogously A(Fl, H) can be

made positive by choosing an H which puts most of its probability on (%, =).




To be specific, for

1,98x, 0<sxsk,
H (x) =
1 - exp(-bx), % s x,

with b = -2log.01, we find A(Fl, Hl) = -,16. Thus if H, is the true censoring

1
distribution, and the sample size n is sufficiently large, Hyde's test will lead

to the decision that the failure rate 2x of F, is '"larger" than the constant

1

failure rate 1 of the hypothesized G. However, for

.0025x, 0sxs 2,
Hz(x) = {.005 + .99(x-2), 2 < x s 3,
1 - exp(-cx), 3 <x,

with ¢ = -(1/3)10g.005, we find A(Fl, H,) = .11. Thus when H, is the true

censoring distribution, and n is sufficiently large, Hyde's test will lead to

the decision that the failure rate of Fl is '"'smalleri than that of G.

An advantage of the C test proposed in Section 2 is that C estimates
-fﬁ(x)df(x), independently of the censoring distribution H. The analogous property
for ﬁ in the two sample situation was a motivating factor in Efron's development
of the test based on W.

In a limited study we have obtained Monte Carlo power comparisons of the tests
based on C, D, and ¢2. Since the tests based on these statistics are only asymp-
totically exact, our study also provides information about the closeness of the true
levels to their nominal asymptotically correct values. Though the tests based on C
and D can be one-3ided or two-sided, the 2 test is inherently two-sided and thus
only two-sided counterparts based on C and D were used. Furthermore, although
assumption (3.2) is restrictive and not required by the C or D tests, in fairness
to the ¢? test we have sampled from situations where (3.2) is satisfied and where
B is one of the values for which asymptotic percentage points of y2 are tabled by

Koziol and Green.
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Table 1 compares the power of the tests based on C, D, and y2 for (a) G
specified to be standard normal and F taken to be a normal with a location shift,
and (b) G specified to be exponential with scale parameter 1 and F taken to
be exponen;ial with a different scale parameter. In each case H was selected
so that (3.2) was satisfied with either 8 = .5 or g = 1. The rough indications
from Table 1 are that for situation (a) C is to be preferred to ¢2 which in
turn is to be preferred to D. For situation (b) C does best and v2 performs
better than D for alternatives close to the null hypothesis but ¢2 trails D

for alternatives more distant from HO'

Although the values in Table 1 are favourable to the C test, we remind the
reader that it is easy to exhibit situations where C will be inadequate. For
example, under assumption (3.2) with 0 < B < 2, the y2 test will be consistent
when G is specified to be N(0, 1) and F is a scale alternative, F = N(O, a2)
with 02 =2 1. In such a case the C test will have power remaining approximately

at a since for such alternatives [FdG = k.

T I T T T e S s

G
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Thblevl.('éStinntddpouersof “C,'D, and $2 tests. ‘v

I

(a) Hypothesized normal, normal location alternatives.

6(x) = o(x), F(x) = &(x-0), H = (PP

Test C

a\é

.01 .013

.05 .038

.10 .096
a\o

.01 .007

.05 .043

.10 .096
a\@

.01 .018

.05 .044

.10 .086
a\6

.01 .010

.05 .052

.10 .097

.018
.061
.114

.014
.050
.094

.010
.060
.127

.013
.057
.108

wz

.011
.051
.098

.007
.052
.105

.013
.057
.103

.017
.054
.109

.078
.199
.279

.218
.395
.521

.056
.152
.227

.182
.353
.445

20,

.25
.017
.081
.167

S0,
.25
.097
.253
.387

20,

.25
.011
.058
.128

50,
.25
.063
.219
.328

wz
B=1%

.040
.139
.226

.145
.316
.438

.025
.103
.163

.097
.255
.359

.381
.590
.703

.790
.911
.947

.346
.527
.628

.743
.884
.926

.5
.154
.384
.525

.5
.576
«792
.881

.107
.329
.462

.514
.780
.861

.230
.466
.600

.671
.847
.908

.158
.351
.453

.521
.762
.845

772
.928
.961

.991
.998
1.000

.726
.872
.918

.981
.994
.997

s N . 0 5 s et ol 0 e S5 S N i B o B S 20 S S+ 2

.75
.481
.767
.876

.75
.962
.992
.997

.75
.403
.688
.825

.75
.921
.980
.992

.596
.825
.902

.975
.995
.999

.417
.680
.798

.927
.978
.988




(b) Hypothesized exponential, exponential scale alternatives.

Y

B(x) = exp(-x), F(x) = exp(-6x), A = (F)F

Test C
a\o6
.01 .019
.05 .051
.10 .095
a\6
.01 .012
.05 .044
.10 .089
a\d
.01 .010
.05 .046
.10 .092
a\o
.01 .009
.05 .045
10 .093

D

.020
.072
.129

.011
.052
.105

.017
.059
.106

017
.054
.102

wz

.021
.060
.110

.014
.052
.099

.011
.054
.105

.017
.057
.111

c D v2

n=20, =%
.8

.074 .021 .045

153 .086 .124

.247 .160 .203

n=50,8=»%
.8

.145 .075 .096

.312 .236 .261

417 .348 .360

n=20, g =1
.8

.058 .014 .036

.148 .076 .102

.200 .148 .166

n=508=1
.8

.106 .040 .059

.240 .164 .187

.335 .259 .273

4. EXAMPLE

.320
.518
.617

.666
.827
.886

.279
.462
.569

.590
.766
.834

.6
.204
.444
.577

.620
.805
.886

.102
.312
.439

.6
.440
677
.784

*2

.212
.415

.537
.775
.845

.123
.299
.398

.620
.733

.791

.937

.996
.999
.999

.738
.867
.917

.993
1.000
1.000

.835
.896

.4
.990
1.000
1.000

The data in Table 2, kindly furnished by Drs. J. A. Koziol and S. B. Green,

are an updated (March, 1977) version of the data set used by Koziol and Green to

illustrate their goodness-of-fit test based on 2.

The data correspond to 211

.655
.851
.910

.992
.998
.999

.520
.740
.814

state IV prostate cancer patients treated with estrogen in a Veterans Administration

Cooperative Urological Research Group (1967) study.

At tae darch, 1977 closing date -

there were 90 patients who died of prostate cancer, 105 who died of other diseases, and
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16 still alive. Those observations corresponding to deaths due to other causes and
those corresponding to the 16 survivors are treated as censored observations (with-
drawals). As reported by Koziol and Green (1976), there is a basis for suspecting
that had the patients not been treated with estrogen, their survival distribution
for deaths from cancer of the prostate would be exponential with mean 100 months.

We thus applied the C, D, and Y2 statistics to test that the survival distribution
is G(x) = exp(-x/100).

For the data of Table 2, C' = .69 with a corresponding two-sided P value of

.49. Hyde's statistic is D = -,17 with a corresponding two-sided P value of .86.
The value of the Koziol-Green statistic for the data of Table 2 is ¢2? = 1.02. Since
the proportion P. of censored observations is 121/211 = .573, we find from (3.3)
that a = 1.34. Entering Table 1 of Koziol and Green (1976) at B = 3/2 with
¥2 = 1.02 gives P % .14,

Although all P values are consistent with the hypothesized exponential with

mean 100, the value of ¢2 is more suggestive of a possible deviation from Hy than

are the values of C' and D. Some insight into this is obtained from Figure 1
which contains plots of the Kaplan-Meier estimator %’ and the hypothesized survival

function G.

The visual indication from Figure 1 is consistent with an underlying life distri-
bution F having the property that deG is close to %. Indeed, the value of C
for the data of Table 2 is .51. Recall that C estimates deG. Similarly, Figure 1
suggests that the average failure rates of F and G are close and thus it is not
surprising that Hyde's statistic assumes a value that is close to its null expected
value of zero. However, in a Cramér-von Mises type statistic such as the Koziol-Green
v2, the e(x) - G(x) differences are squared. Thus the negative deviations, found
here mostly for the middle month values, do not '‘cancel' the positive deviations,
found in the early and late months portions of the axis. This is a possible expla-

nation for the relatively lower P value achieved by ¢2.
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The value of ¢2 = 1.02 was computed for an updated version of the data used
by Koziol and Green (1976). Nevertheless, even allowing for updating, our value
of 1.02 is not close to their reported value of ¢2 = .484. Although we are unable
; . to obtain the earlier data, we believe the Koziol-Green value is incorrect and sus-
pect that an error in the value reported by Koziol and Green may have arisen through
their use, in Appendix 2 of their paper, of the same symbol n to denote both the
fixed sample size and the random number of uncensored observations. The possibility
of an error of this nature has been confirmed by Drs. Koziol and Green in conver-

sations with the authors of this paper.

Tnble 2: Survival times and withdrawal times in months for 211 patients
(with number of ties given in parentheses) '

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3), 17(2),
18, 19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2), 30, 31, 32(3),
ig; 33(2), 34, 35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3), 46, 47(2), 48(2), 51,
5 53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2), 100, 145, 158.

Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5), 7(5), 8, 9(2), 10, 11, 12(3),
13(3), 14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 23, 25, 27, 28, 31, 32, 34, 35,
t 37, 38(4), 39(2), 44(3), 46, 47, 48, 49, 50, 53(2), 55, 56, 59, 61, 62, 65, 66(2),
72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2), 106, 109, 119(2), 125, 127, 129,
131, 133(2), 135, 136(2), 138, 141, 142, 143, 144, 148, 160, 164(3).

This research was sponsored by the U.S. Air Force Office of Scientific Research.

; The authors express their gratituds to John Kitchin for programming the Monte Carlo
calculations of Section 3, the computations of C, D, and ¢2 for the data of
Table 2, and a computer plot of Figure 1. We also thank James Koziol and Sylvan
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